Restoring gravel bed spawning grounds – solution or cosmetics?

Lessons learned from European projects in the last decades

Ulrich Pulg, Bjørn T. Barlaup, Helge Skoglund, Christoph Hauer, Gaute Velle

Ulrich.pulg@uni.no

ronmental Design of Renewable Energy

of Norway

The Research Council E-CO Energi, BKK, Agder Energi, Landesfischereiverband Bayern e.V.

Objectives

- Gravel bed spawning grounds are essential for lithophilic fish species
- Severe decline of lithophilic species overrepresentation in Red Lists
- Main reasons: Pollution migration barriers habitat degradation

Topic today: Evaluation of restoring gravel bed spawning grounds

Background

Substrate spawners (e.g. Cyprinids) Interstitial spawners (e.g. Salmonids)

Interstitial spawners, Atlantic salmon at Daleelva Norway, Tore Wiers, Uni Research LFI

Background

Spawning habitat degradation

 Degradation of spawning grounds due to fines, colmation, erosion, clogging

Barlaup et al. 2008 Pulg et al. 2013

Improving spawning habitats

Methods:

- River restoration
- Hydraulic adjustments
- Gravel cleaning
- Gravel augmentation

Are the methods successful?

Process-based versus local mitigation measures

Review of 20 projects

• Summary of 20 projects (Norway, Germany, Austria), *Hauer et al. (2013)*

 Success criteria: Sufficient sediment quality for target species to reproduce and juveniles to increase

• Focus on duration of the measures – years of success

Improving spawning habitats

20 case studies, e.g.:

Peitnach river (Germany): Removal of dam, restoring of fluvial processes, sediment transport, years of success > 20

Bjornesfjorden (Norway): Gravel augmentation years of success > 20

Moosach river (Germany): Gravel augmentation, years of success = 6

Results

- Restoring processes is most successful and long lasting
- No significant differences between other methods, morphology, sediment dynamics

Results

Success correlates significantly with degree of regulation and land use

Discussion

What can we learn?

1.Best: Restoring fluvial processes, especially bed dynamics & bed load Long termed

If not possible

2. Second best: Local measures. Gravel cleaning/ augmentation/hydraulics Short-long termed

Valid for both: Clean water increases success

Discussion

Reality check

Is it possible to processes in heavily modified rivers?

Yes! Example Nidelva (Norway)

But in many cases not (yet)...

Should we give up lithopilic species in these rivers?

Stocking?

Discussion

 Maintaining regulated rivers is a standard procedure: bank stabilization, dams, dikes, locks, power plants

• Why not key fish habitats?

Discussion Conclusions

- Restoring processes like river bed dynamics and bed load make long lasting spawning grounds
- Mitigation measures like gravel cleaning/augmentation can be helpful tools in heavily modified stretches – but are often short termed
- Maintenance imitating natural processes is needed in such cases if gravel bed spawners should be conserved
- Habitat management as standard part of water management in regulated rivers is recommended

